Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.797
Filtrar
1.
Nat Commun ; 15(1): 3528, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664444

RESUMEN

Cardiac dysfunction is a hallmark of aging in humans and mice. Here we report that a two-week treatment to restore youthful Bridging Integrator 1 (BIN1) levels in the hearts of 24-month-old mice rejuvenates cardiac function and substantially reverses the aging phenotype. Our data indicate that age-associated overexpression of BIN1 occurs alongside dysregulated endosomal recycling and disrupted trafficking of cardiac CaV1.2 and type 2 ryanodine receptors. These deficiencies affect channel function at rest and their upregulation during acute stress. In vivo echocardiography reveals reduced systolic function in old mice. BIN1 knockdown using an adeno-associated virus serotype 9 packaged shRNA-mBIN1 restores the nanoscale distribution and clustering plasticity of ryanodine receptors and recovers Ca2+ transient amplitudes and cardiac systolic function toward youthful levels. Enhanced systolic function correlates with increased phosphorylation of the myofilament protein cardiac myosin binding protein-C. These results reveal BIN1 knockdown as a novel therapeutic strategy to rejuvenate the aging myocardium.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Envejecimiento , Miocardio , Proteínas del Tejido Nervioso , Canal Liberador de Calcio Receptor de Rianodina , Proteínas Supresoras de Tumor , Animales , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Masculino , Envejecimiento/metabolismo , Ratones , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Miocardio/metabolismo , Miocardio/patología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Técnicas de Silenciamiento del Gen , Endosomas/metabolismo , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/genética , Corazón/fisiopatología , Ratones Endogámicos C57BL , Humanos , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/genética , Sístole
2.
Nature ; 628(8009): 818-825, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38658687

RESUMEN

Timothy syndrome (TS) is a severe, multisystem disorder characterized by autism, epilepsy, long-QT syndrome and other neuropsychiatric conditions1. TS type 1 (TS1) is caused by a gain-of-function variant in the alternatively spliced and developmentally enriched CACNA1C exon 8A, as opposed to its counterpart exon 8. We previously uncovered several phenotypes in neurons derived from patients with TS1, including delayed channel inactivation, prolonged depolarization-induced calcium rise, impaired interneuron migration, activity-dependent dendrite retraction and an unanticipated persistent expression of exon 8A2-6. We reasoned that switching CACNA1C exon utilization from 8A to 8 would represent a potential therapeutic strategy. Here we developed antisense oligonucleotides (ASOs) to effectively decrease the inclusion of exon 8A in human cells both in vitro and, following transplantation, in vivo. We discovered that the ASO-mediated switch from exon 8A to 8 robustly rescued defects in patient-derived cortical organoids and migration in forebrain assembloids. Leveraging a transplantation platform previously developed7, we found that a single intrathecal ASO administration rescued calcium changes and in vivo dendrite retraction of patient neurons, suggesting that suppression of CACNA1C exon 8A expression is a potential treatment for TS1. Broadly, these experiments illustrate how a multilevel, in vivo and in vitro stem cell model-based approach can identify strategies to reverse disease-relevant neural pathophysiology.


Asunto(s)
Trastorno Autístico , Canales de Calcio Tipo L , Movimiento Celular , Exones , Síndrome de QT Prolongado , Neuronas , Oligonucleótidos Antisentido , Sindactilia , Humanos , Oligonucleótidos Antisentido/uso terapéutico , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/administración & dosificación , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/genética , Trastorno Autístico/genética , Trastorno Autístico/terapia , Trastorno Autístico/tratamiento farmacológico , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Exones/genética , Sindactilia/genética , Sindactilia/terapia , Animales , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/tratamiento farmacológico , Síndrome de QT Prolongado/terapia , Ratones , Movimiento Celular/efectos de los fármacos , Calcio/metabolismo , Organoides/metabolismo , Prosencéfalo/metabolismo , Prosencéfalo/citología , Empalme Alternativo/genética , Masculino , Dendritas/metabolismo , Dendritas/efectos de los fármacos , Femenino
3.
Channels (Austin) ; 18(1): 2335469, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38564754

RESUMEN

Studies in genetically modified animals and human genetics have recently provided new insight into the role of voltage-gated L-type Ca2+ channels in human disease. Therefore, the inhibition of L-type Ca2+ channels in vivo in wildtype and mutant mice by potent dihydropyridine (DHP) Ca2+ channel blockers serves as an important pharmacological tool. These drugs have a short plasma half-life in humans and especially in rodents and show high first-pass metabolism upon oral application. In the vast majority of in vivo studies, they have therefore been delivered through parenteral routes, mostly subcutaneously or intraperitoneally. High peak plasma concentrations of DHPs cause side effects, evident as DHP-induced aversive behaviors confounding the interpretation of behavioral readouts. Nevertheless, pharmacokinetic data measuring the exposure achieved with these applications are sparse. Moreover, parenteral injections require animal handling and can be associated with pain, discomfort and stress which could influence a variety of physiological processes, behavioral and other functional readouts. Here, we describe a noninvasive oral application of the DHP isradipine by training mice to quickly consume small volumes of flavored yogurt that can serve as drug vehicle. This procedure does not require animal handling, allows repeated drug application over several days and reproducibly achieves peak plasma concentrations over a wide range previously shown to be well-tolerated in humans. This protocol should facilitate ongoing nonclinical studies in mice exploring new indications for DHP Ca2+ channel blockers.


Asunto(s)
Bloqueadores de los Canales de Calcio , Canales de Calcio Tipo L , Ratones , Humanos , Animales , Isradipino/farmacología , Isradipino/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Administración Oral
4.
Cell Mol Life Sci ; 81(1): 164, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575795

RESUMEN

Diabetic hyperglycemia induces dysfunctions of arterial smooth muscle, leading to diabetic vascular complications. The CaV1.2 calcium channel is one primary pathway for Ca2+ influx, which initiates vasoconstriction. However, the long-term regulation mechanism(s) for vascular CaV1.2 functions under hyperglycemic condition remains unknown. Here, Sprague-Dawley rats fed with high-fat diet in combination with low dose streptozotocin and Goto-Kakizaki (GK) rats were used as diabetic models. Isolated mesenteric arteries (MAs) and vascular smooth muscle cells (VSMCs) from rat models were used to assess K+-induced arterial constriction and CaV1.2 channel functions using vascular myograph and whole-cell patch clamp, respectively. K+-induced vasoconstriction is persistently enhanced in the MAs from diabetic rats, and CaV1.2 alternative spliced exon 9* is increased, while exon 33 is decreased in rat diabetic arteries. Furthermore, CaV1.2 channels exhibit hyperpolarized current-voltage and activation curve in VSMCs from diabetic rats, which facilitates the channel function. Unexpectedly, the application of glycated serum (GS), mimicking advanced glycation end-products (AGEs), but not glucose, downregulates the expression of the splicing factor Rbfox1 in VSMCs. Moreover, GS application or Rbfox1 knockdown dynamically regulates alternative exons 9* and 33, leading to facilitated functions of CaV1.2 channels in VSMCs and MAs. Notably, GS increases K+-induced intracellular calcium concentration of VSMCs and the vasoconstriction of MAs. These results reveal that AGEs, not glucose, long-termly regulates CaV1.2 alternative splicing events by decreasing Rbfox1 expression, thereby enhancing channel functions and increasing vasoconstriction under diabetic hyperglycemia. This study identifies the specific molecular mechanism for enhanced vasoconstriction under hyperglycemia, providing a potential target for managing diabetic vascular complications.


Asunto(s)
Diabetes Mellitus Experimental , Angiopatías Diabéticas , Hiperglucemia , Animales , Ratas , Calcio/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Constricción , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Angiopatías Diabéticas/metabolismo , Glucosa/metabolismo , Hiperglucemia/genética , Hiperglucemia/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Ratas Sprague-Dawley
5.
Hum Mol Genet ; 33(3): 254-269, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-37930228

RESUMEN

CACNA1S-related myopathy, due to pathogenic variants in the CACNA1S gene, is a recently described congenital muscle disease. Disease associated variants result in loss of gene expression and/or reduction of Cav1.1 protein stability. There is an incomplete understanding of the underlying disease pathomechanisms and no effective therapies are currently available. A barrier to the study of this myopathy is the lack of a suitable animal model that phenocopies key aspects of the disease. To address this barrier, we generated knockouts of the two zebrafish CACNA1S paralogs, cacna1sa and cacna1sb. Double knockout fish exhibit severe weakness and early death, and are characterized by the absence of Cav1.1 α1 subunit expression, abnormal triad structure, and impaired excitation-contraction coupling, thus mirroring the severe form of human CACNA1S-related myopathy. A double mutant (cacna1sa homozygous, cacna1sb heterozygote) exhibits normal development, but displays reduced body size, abnormal facial structure, and cores on muscle pathologic examination, thus phenocopying the mild form of human CACNA1S-related myopathy. In summary, we generated and characterized the first cacna1s zebrafish loss-of-function mutants, and show them to be faithful models of severe and mild forms of human CACNA1S-related myopathy suitable for future mechanistic studies and therapy development.


Asunto(s)
Canales de Calcio Tipo L , Enfermedades Musculares , Proteínas de Pez Cebra , Pez Cebra , Animales , Humanos , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Músculo Esquelético/metabolismo , Enfermedades Musculares/patología , Mutación , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
6.
BMC Public Health ; 23(1): 2346, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012695

RESUMEN

BACKGROUND: Most studies have focused on the risk factors, treatment, and care of affective psychosis, and several have reported a relationship between ambient air quality and this psychosis. Although an association has been reported between psychosis and genes, studies mainly explored the associations between one type of psychosis and one gene; few have identified genes related to affective psychosis. This study investigates the genetic and environmental factors of affective psychosis. METHODS: In this retrospective longitudinal study, 27 604 participants aged 30-70 were selected from Taiwan Biobank. The participants' propensity scores were calculated based on their demographic information, and propensity score matching was performed to divide the participants into an experimental (i.e., affective psychosis) and control group at a 1:5 ratio. Plink was used to analyze the major and minor types of gene expression related to affective psychosis, and PM2.5 exposure was incorporated into the analyses. RESULTS: According to the generalized estimating equation analysis results, 8 single nucleotide polymorphisms (SNPs) belonging to the ANK3, BDNF, CACNA1C, and GRID1 genotypes were significantly correlated with depressive disorder (P < .001), with the majority belonging to the ANK3 and CACNA1C. A total of 5 SNPs belonging to the CACNA1C, GRID1, and SIRT1 genotypes were significantly correlated with bipolar disorder (P < .001), with the majority belonging to the CACNA1C. No significant correlation was identified between ambient air pollution and affective psychosis. CONCLUSIONS: CACNA1C and GRID1 are common SNP genotypes for depressive disorder and bipolar disorder and should be considered associated with affective psychosis.


Asunto(s)
Bancos de Muestras Biológicas , Predisposición Genética a la Enfermedad , Humanos , Estudios Retrospectivos , Estudios Longitudinales , Taiwán/epidemiología , Canales de Calcio Tipo L/genética , Trastornos del Humor , Polimorfismo de Nucleótido Simple , Material Particulado/efectos adversos , Estudio de Asociación del Genoma Completo
7.
BMC Pediatr ; 23(1): 500, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37784084

RESUMEN

BACKGROUND: The CACNA1S gene encodes the alpha 1 S-subunit of the voltage-gated calcium channel, which is primarily expressed in the skeletal muscle cells. Pathogenic variants of CACNA1S can cause hypokalemic periodic paralysis (HypoPP), malignant hyperthermia susceptibility, and congenital myopathy. We aimed to study the clinical and molecular features of a male child with a CACNA1S variant and depict the molecular sub-regional characteristics of different phenotypes associated with CACNA1S variants. CASE PRESENTATION: We presented a case of HypoPP with recurrent muscle weakness and hypokalemia. Genetic analyses of the family members revealed that the proband had a novel c.497 C > A (p.Ala166Asp) variant of CACNA1S, which was inherited from his father. The diagnosis of HypoPP was established in the proband as he met the consensus diagnostic criteria. The patient and his parents were informed to avoid the classical triggers of HypoPP. The attacks of the patient are prevented by lifestyle changes and nutritional counseling. We also showed the molecular sub-regional location of the variants of CACNA1S which was associated with different phenotypes. CONCLUSIONS: Our results identified a new variant of CACNA1S and expanded the spectrum of variants associated with HypoPP. Early genetic diagnosis can help avoid diagnostic delays, perform genetic counseling, provide proper treatment, and reduce morbidity and mortality.


Asunto(s)
Parálisis Periódica Hipopotasémica , Humanos , Masculino , Niño , Parálisis Periódica Hipopotasémica/diagnóstico , Parálisis Periódica Hipopotasémica/genética , Parálisis Periódica Hipopotasémica/complicaciones , Mutación , Fenotipo , Debilidad Muscular , Familia , Canales de Calcio Tipo L/genética
8.
Proc Natl Acad Sci U S A ; 120(45): e2301534120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37903257

RESUMEN

L-type voltage-gated calcium (Ca2+) channels (L-VGCC) dysfunction is implicated in several neurological and psychiatric diseases. While a popular therapeutic target, it is unknown whether molecular mechanisms leading to disrupted L-VGCC across neurodegenerative disorders are conserved. Importantly, L-VGCC integrate synaptic signals to facilitate a plethora of cellular mechanisms; however, mechanisms that regulate L-VGCC channel density and subcellular compartmentalization are understudied. Herein, we report that in disease models with overactive mammalian target of rapamycin complex 1 (mTORC1) signaling (or mTORopathies), deficits in dendritic L-VGCC activity are associated with increased expression of the RNA-binding protein (RBP) Parkinsonism-associated deglycase (DJ-1). DJ-1 binds the mRNA coding for the alpha and auxiliary Ca2+ channel subunits CaV1.2 and α2δ2, and represses their mRNA translation, only in the disease states, specifically preclinical models of tuberous sclerosis complex (TSC) and Alzheimer's disease (AD). In agreement, DJ-1-mediated repression of CaV1.2/α2δ2 protein synthesis in dendrites is exaggerated in mouse models of AD and TSC, resulting in deficits in dendritic L-VGCC calcium activity. Finding of DJ-1-regulated L-VGCC activity in dendrites in TSC and AD provides a unique signaling pathway that can be targeted in clinical mTORopathies.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Tuberosa , Animales , Ratones , Enfermedad de Alzheimer/genética , Calcio/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Dendritas/metabolismo , Mamíferos/metabolismo , Esclerosis Tuberosa/genética
9.
Hypertension ; 80(12): 2665-2673, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37846579

RESUMEN

BACKGROUND: Disease-causing mutations in CACNA1D gene occur in aldosterone-producing adenomas and familial hyperaldosteronism. We determined whether single nucleotide polymorphisms in CACNA1D gene associate with higher aldosterone resulting in salt sensitivity of blood pressure (BP) and increased BP in men and women. METHODS: Data were obtained from the HyperPATH (International Hypertension Pathotypes) cohort, where participants completed a cross-over intervention of liberal and restricted sodium diets. Multi-Ethnic Genotyping Array identified 104 CACNA1D single nucleotide polymorphisms that met quality control. Single nucleotide polymorphism is rs7612148 strongly associated with systolic BP and was selected for study in 521 White participants in 3 scenarios ([1] hypertensives; [2] normotensives; [3] total population=hypertensives+normotensives) using multivariate regression analysis. RESULTS: In the total population and hypertensives, but not normotensives, risk allele carriers (CC, GC), as compared with nonrisk allele homozygotes (GG), exhibited higher salt sensitivity of BP and, on liberal sodium diet, higher systolic BP, lower baseline and angiotensin II-stimulated aldosterone, and lower plasma renin activity. On restricted sodium diet, BP was similar across genotypes, suggesting sodium restriction corrected/neutralized the genotype effect on BP. Because increased aldosterone did not seem to drive the increased salt sensitivity of BP and increased BP on liberal sodium diet, we assessed renal plasma flow. Renal plasma flow increase from restricted to liberal sodium diets was blunted in risk allele homozygotes in the total population and in hypertensives. A replication study in another cohort HyperPATH B (International Hypertension Pathotypes Cohort B) confirmed BP-genotype associations. CONCLUSIONS: CACNA1D rs7612148 risk allele associated with increased BP and salt sensitivity of BP, likely due to an impaired ability to increase renal plasma flow in response to a liberal sodium diet and not to excess aldosterone.


Asunto(s)
Aldosterona , Hipertensión , Femenino , Humanos , Masculino , Presión Sanguínea/genética , Canales de Calcio Tipo L/genética , Dieta Hiposódica , Polimorfismo de Nucleótido Simple , Renina , Cloruro de Sodio Dietético/efectos adversos , Población Blanca/genética
10.
Neurology ; 101(18): e1779-e1786, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37679049

RESUMEN

BACKGROUND AND OBJECTIVES: This study aimed to characterize the phenotype of a novel myalgic myopathy encountered in a Finnish family. METHODS: Four symptomatic and 3 asymptomatic individuals from 2 generations underwent clinical, neurophysiologic, imaging, and muscle biopsy examinations. Targeted sequencing of all known myopathy genes was performed. RESULTS: A very rare CACNA1S gene variant c.2893G>C (p.E965Q) was identified in the family. The symptomatic patients presented with exercise-induced myalgia, cramping, muscle stiffness, and fatigue and eventually developed muscle weakness. Examinations revealed mild ptosis and unusual muscle hypertrophy in the upper limbs. In the most advanced disease stage, muscle weakness and muscle atrophy of the limbs were evident. In some patients, muscle biopsy showed mild myopathic findings and creatine kinase levels were slightly elevated. DISCUSSION: Myalgia is a very common symptom affecting quality of life. Widespread myalgia may be confused with other myalgic syndromes such as fibromyalgia. In this study, we show that variants in CACNA1S gene may be one cause of severe exercise-induced myalgia.


Asunto(s)
Enfermedades Musculares , Mialgia , Humanos , Mialgia/genética , Calidad de Vida , Enfermedades Musculares/genética , Enfermedades Musculares/diagnóstico , Debilidad Muscular/genética , Fenotipo , Canales de Calcio Tipo L/genética
11.
Psychiatr Genet ; 33(5): 182-190, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37706495

RESUMEN

OBJECTIVES: Numerous genome-wide association studies have identified CACNA1C as one of the top risk genes for schizophrenia. As a necessary post-genome-wide association study (GWAS) follow-up, here, we focused on this risk gene, carefully investigated its novel risk variants for schizophrenia, and explored their potential functions. METHODS: We analyzed four independent samples (including three European and one African-American) comprising 5648 cases and 6936 healthy subjects to identify replicable single nucleotide polymorphism-schizophrenia associations. The potential regulatory effects of schizophrenia-risk alleles on CACNA1C mRNA expression in 16 brain regions (n = 348), gray matter volumes (GMVs) of five subcortical structures (n = 34 431), and surface areas and thickness of 34 cortical regions (n = 36 936) were also examined. RESULTS: A novel 17-variant block across introns 36-45 of CACNA1C was significantly associated with schizophrenia in the same effect direction across at least two independent samples (1.8 × 10-4 ≤ P ≤ 0.049). Most risk variants within this block showed significant associations with CACNA1C mRNA expression (1.6 × 10-3 ≤ P ≤ 0.050), GMVs of subcortical structures (0.016 ≤ P ≤ 0.048), cortical surface areas (0.010 ≤ P ≤ 0.050), and thickness (0.004 ≤ P ≤ 0.050) in multiple brain regions. CONCLUSION: We have identified a novel and functional risk variant block at CACNA1C for schizophrenia, providing further evidence for the important role of this gene in the pathogenesis of schizophrenia.


Asunto(s)
Estudio de Asociación del Genoma Completo , Esquizofrenia , Humanos , Intrones/genética , Esquizofrenia/genética , Alelos , ARN Mensajero , Canales de Calcio Tipo L/genética
12.
JCI Insight ; 8(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37698939

RESUMEN

Germline de novo missense variants of the CACNA1D gene, encoding the pore-forming α1 subunit of Cav1.3 L-type Ca2+ channels (LTCCs), have been found in patients with neurodevelopmental and endocrine dysfunction, but their disease-causing potential is unproven. These variants alter channel gating, enabling enhanced Cav1.3 activity, suggesting Cav1.3 inhibition as a potential therapeutic option. Here we provide proof of the disease-causing nature of such gating-modifying CACNA1D variants using mice (Cav1.3AG) containing the A749G variant reported de novo in a patient with autism spectrum disorder (ASD) and intellectual impairment. In heterozygous mutants, native LTCC currents in adrenal chromaffin cells exhibited gating changes as predicted from heterologous expression. The A749G mutation induced aberrant excitability of dorsomedial striatum-projecting substantia nigra dopamine neurons and medium spiny neurons in the dorsal striatum. The phenotype observed in heterozygous mutants reproduced many of the abnormalities described within the human disease spectrum, including developmental delay, social deficit, and pronounced hyperactivity without major changes in gross neuroanatomy. Despite an approximately 7-fold higher sensitivity of A749G-containing channels to the LTCC inhibitor isradipine, oral pretreatment over 2 days did not rescue the hyperlocomotion. Cav1.3AG mice confirm the pathogenicity of the A749G variant and point toward a pathogenetic role of altered signaling in the dopamine midbrain system.


Asunto(s)
Trastorno del Espectro Autista , Humanos , Animales , Ratones , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Mutación , Dopamina , Fenotipo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo
13.
Immunotherapy ; 15(15): 1275-1291, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37584225

RESUMEN

Aims: There is an urgent need for appropriate biomarkers that can precisely and reliably predict immunotherapy efficacy, as immunotherapy responses can differ in skin cutaneous melanoma (SKCM) patients. Methods: In this study, univariate regression models and survival analysis were used to examine the link between calcium voltage-gated channel subunit alpha 1C (CACNA1C) mutation status and immunotherapy outcome in SKCM patients receiving immunotherapy. Mutational landscape, immunogenicity, tumor microenvironment and pathway-enrichment analyses were also performed. Results: The CACNA1C mutation group had a better prognosis, higher immunogenicity, lower endothelial cell infiltration, significant enrichment of antitumor immune response pathways and significant downregulation of protumor pathways. Conclusion: CACNA1C mutation status is anticipated to be a biomarker for predicting melanoma immunotherapy effectiveness.


Aims: The treatment to make the immune system work better is also used to treat a skin cancer called skin cutaneous melanoma (SKCM). We need new ways to predict if the treatment will work. Methods: We looked at two groups of people getting the treatment to make the immune system work better. One group had a special change in their bodies, and the other group did not. We looked at how this change affected the patients. We also looked at how to make their immune system stronger. Results: We found that people with mutations tend to have better chances of getting better from their sickness. Conclusion: We think that this might be a good way to tell if immunotherapy will work well for this type of SKCM.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Canales de Calcio Tipo L/genética , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Melanoma/genética , Melanoma/terapia , Mutación/genética , Pronóstico , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/terapia , Microambiente Tumoral
14.
Mol Neurobiol ; 60(12): 6826-6839, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37493923

RESUMEN

Genetic perturbations in dopamine neurotransmission and calcium signaling pathways are implicated in the etiology of schizophrenia. We aimed to test the association of a functional splice variant each in Dopamine ß-Hydroxylase (DBH; rs1108580) and Calcium voltage-gated channel subunit alpha1 C (CACNA1C; rs1006737) genes in these pathways with schizophrenia (506 cases, 443 controls); Abnormal Involuntary Movement Scale (AIMS) scores in subjects assessed for tardive dyskinesia (76 TD-positive, 95 TD-negative) and Penn Computerized Neurocognitive Battery (PennCNB) scores (334 cases, 234 controls). The effect of smoking status and SNP genotypes on AIMS scores were assessed using ANOVA; health status and SNP genotypes on three performance functions of PennCNB cognitive domains were assessed by ANCOVA with age and sex as covariates. Association with Positive and Negative Syndrome Scale (PANSS) scores in the TD cohort and cognitive scores in healthy controls of the cognition cohort were tested by linear regression. None of the markers were associated with schizophrenia. Smoking status [F(2, 139) = 10.6; p = 5 × 10-5], rs1006737 [F(2, 139) = 7.1; p = 0.001], TD status*smoking [F(2, 139) = 8.0; p = 5.0 × 10-4] and smoking status*rs1006737 [F(4, 139) = 2.7; p = 0.03] had an effect on AIMS score. Furthermore, rs1006737 was associated with orofacial [F(2, 139) = 4.6; p = 0.01] and limb-truncal TD [(F(2, 139) = 3.8; p = 0.02]. Main effect of rs1108580 on working memoryprocessing speed [F(2, 544) = 3.8; p = 0.03] and rs1006737 on spatial abilityefficiency [F(1, 550) = 9.4; p = 0.02] was identified. Health status*rs1006737 interaction had an effect on spatial memoryprocessing speed [F(1, 550) = 6.9; p = 0.01]. Allelic/genotypic association (p = 0.01/0.03) of rs1006737 with disorganized/concrete factor and allelic association of rs1108580 (p = 0.04) with a depressive factor of PANSS was observed in the TD-negative subcohort. Allelic association of rs1006737 with sensorimotor dexterityaccuracy (p = 0.03), attentionefficiency (p = 0.05), and spatial abilityefficiency (p = 0.02); allelic association of rs1108580 with face memoryaccuracy (p = 0.05) and emotionefficiency (p = 0.05); and allelic/genotypic association with emotionaccuracy (p = 0.003/0.009) were observed in healthy controls of the cognition cohort. These association findings may have direct implications for personalized medicine and cognitive remediation.


Asunto(s)
Esquizofrenia , Discinesia Tardía , Humanos , Discinesia Tardía/genética , Esquizofrenia/genética , Fumar , Cognición , Velocidad de Procesamiento , Canales de Calcio Tipo L/genética
15.
Genes (Basel) ; 14(7)2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37510268

RESUMEN

BACKGROUND: Congenital myopathies are a group of clinically, genetically, and histologically heterogeneous diseases caused by mutations in a large group of genes. One of these is CACNA1S, which is recognized as the cause of Dihydropyridine Receptor Congenital Myopathy. METHODS: To better characterize the phenotypic spectrum of CACNA1S myopathy, we conducted a systematic review of cases in the literature through three electronic databases following the PRISMA guidelines. We selected nine articles describing 23 patients with heterozygous, homozygous, or compound heterozygous mutations in CACNA1S and we added one patient with a compound heterozygous mutation in CACNA1S (c.1394-2A>G; c.1724T>C, p.L575P) followed at our Institute. We collected clinical and genetic data, muscle biopsies, and muscle MRIs when available. RESULTS: The phenotype of this myopathy is heterogeneous, ranging from more severe forms with a lethal early onset and mild-moderate forms with a better clinical course. CONCLUSIONS: Our patient presented a phenotype compatible with the mild-moderate form, although she presented peculiar features such as a short stature, myopia, mild sensorineural hearing loss, psychiatric symptoms, and posterior-anterior impairment gradient on thigh muscle MRI.


Asunto(s)
Enfermedades Musculares , Miotonía Congénita , Femenino , Humanos , Canales de Calcio Tipo L/genética , Enfermedades Musculares/genética , Mutación , Músculo Esquelético/patología , Fenotipo , Miotonía Congénita/genética
17.
Cardiovasc Diabetol ; 22(1): 168, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37415128

RESUMEN

BACKGROUND: L-type Ca2+ channel CaV1.2 is essential for cardiomyocyte excitation, contraction and gene transcription in the heart, and abnormal functions of cardiac CaV1.2 channels are presented in diabetic cardiomyopathy. However, the underlying mechanisms are largely unclear. The functions of CaV1.2 channels are subtly modulated by splicing factor-mediated alternative splicing (AS), but whether and how CaV1.2 channels are alternatively spliced in diabetic heart remains unknown. METHODS: Diabetic rat models were established by using high-fat diet in combination with low dose streptozotocin. Cardiac function and morphology were assessed by echocardiography and HE staining, respectively. Isolated neonatal rat ventricular myocytes (NRVMs) were used as a cell-based model. Cardiac CaV1.2 channel functions were measured by whole-cell patch clamp, and intracellular Ca2+ concentration was monitored by using Fluo-4 AM. RESULTS: We find that diabetic rats develop diastolic dysfunction and cardiac hypertrophy accompanied by an increased CaV1.2 channel with alternative exon 9* (CaV1.2E9*), but unchanged that with alternative exon 8/8a or exon 33. The splicing factor Rbfox2 expression is also increased in diabetic heart, presumably because of dominate-negative (DN) isoform. Unexpectedly, high glucose cannot induce the aberrant expressions of CaV1.2 exon 9* and Rbfox2. But glycated serum (GS), the mimic of advanced glycation end-products (AGEs), upregulates CaV1.2E9* channels proportion and downregulates Rbfox2 expression in NRVMs. By whole-cell patch clamp, we find GS application hyperpolarizes the current-voltage curve and window currents of cardiac CaV1.2 channels. Moreover, GS treatment raises K+-triggered intracellular Ca2+ concentration ([Ca2+]i), enlarges cell surface area of NRVMs and induces hypertrophic genes transcription. Consistently, siRNA-mediated knockdown of Rbfox2 in NRVMs upregulates CaV1.2E9* channel, shifts CaV1.2 window currents to hyperpolarization, increases [Ca2+]i and induces cardiomyocyte hypertrophy. CONCLUSIONS: AGEs, not glucose, dysregulates Rbfox2 which thereby increases CaV1.2E9* channels and hyperpolarizes channel window currents. These make the channels open at greater negative potentials and lead to increased [Ca2+]i in cardiomyocytes, and finally induce cardiomyocyte hypertrophy in diabetes. Our work elucidates the underlying mechanisms for CaV1.2 channel regulation in diabetic heart, and targeting Rbfox2 to reset the aberrantly spliced CaV1.2 channel might be a promising therapeutic approach in diabetes-induced cardiac hypertrophy.


Asunto(s)
Diabetes Mellitus Experimental , Animales , Ratas , Calcio/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Productos Finales de Glicación Avanzada/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo
18.
Mol Pain ; 19: 17448069231193383, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37489644

RESUMEN

Phantom tooth pain (PTP) is a rare and specific neuropathic pain that occurs after pulpectomy and tooth extraction, but its cause is not understood. We hypothesized that there is a genetic contribution to PTP. The present study focused on the CACNA1C gene, which encodes the α1C subunit of the Cav1.2 L-type Ca2+ channel (LTCC) that has been reported to be associated with neuropathic pain in previous studies. We investigated genetic polymorphisms that contribute to PTP. We statistically examined the association between genetic polymorphisms and PTP vulnerability in 33 patients with PTP and 118 patients without PTP but with pain or dysesthesia in the orofacial region. From within and around the CACNA1C gene, 155 polymorphisms were selected and analyzed for associations with clinical data. We found that the rs216009 single-nucleotide polymorphism (SNP) of the CACNA1C gene in the recessive model was significantly associated with the vulnerability to PTP. Homozygote carriers of the minor C allele of rs216009 had a higher rate of PTP. Nociceptive transmission in neuropathic pain has been reported to involve Ca2+ influx from LTCCs, and the rs216009 polymorphism may be involved in CACNA1C expression, which regulates intracellular Ca2+ levels, leading to the vulnerability to PTP. Furthermore, psychological factors may lead to the development of PTP by modulating the descending pain inhibitory system. Altogether, homozygous C-allele carriers of the rs216009 SNP were more likely to be vulnerable to PTP, possibly through the regulation of intracellular Ca2+ levels and affective pain systems, such as those that mediate fear memory recall.


Asunto(s)
Neuralgia , Polimorfismo de Nucleótido Simple , Humanos , Polimorfismo de Nucleótido Simple/genética , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Neuralgia/genética
19.
Schizophr Bull ; 49(5): 1174-1184, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37306960

RESUMEN

BACKGROUND: Neuropsychiatric disorders are highly heritable and have overlapping genetic underpinnings. Single nucleotide polymorphisms (SNPs) in the gene CACNA1C have been associated with several neuropsychiatric disorders, across multiple genome-wide association studies. METHOD: A total of 70,711 subjects from 37 independent cohorts with 13 different neuropsychiatric disorders were meta-analyzed to identify overlap of disorder-associated SNPs within CACNA1C. The differential expression of CACNA1C mRNA in five independent postmortem brain cohorts was examined. Finally, the associations of disease-sharing risk alleles with total intracranial volume (ICV), gray matter volumes (GMVs) of subcortical structures, cortical surface area (SA), and average cortical thickness (TH) were tested. RESULTS: Eighteen SNPs within CACNA1C were nominally associated with more than one neuropsychiatric disorder (P < .05); the associations shared among schizophrenia, bipolar disorder, and alcohol use disorder survived false discovery rate correction (five SNPs with P < 7.3 × 10-4 and q < 0.05). CACNA1C mRNA was differentially expressed in brains from individuals with schizophrenia, bipolar disorder, and Parkinson's disease, relative to controls (three SNPs with P < .01). Risk alleles shared by schizophrenia, bipolar disorder, substance dependence, and Parkinson's disease were significantly associated with ICV, GMVs, SA, or TH (one SNP with P ≤ 7.1 × 10-3 and q < 0.05). CONCLUSION: Integrating multiple levels of analyses, we identified CACNA1C variants associated with multiple psychiatric disorders, and schizophrenia and bipolar disorder were most strongly implicated. CACNA1C variants may contribute to shared risk and pathophysiology in these conditions.


Asunto(s)
Trastorno Bipolar , Canales de Calcio Tipo L , Enfermedad de Parkinson , Esquizofrenia , Humanos , Canales de Calcio Tipo L/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Enfermedad de Parkinson/genética , Polimorfismo de Nucleótido Simple/genética , ARN Mensajero , Esquizofrenia/genética , Trastorno Bipolar/genética
20.
Handb Exp Pharmacol ; 279: 139-155, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37306815

RESUMEN

Ca2+ influx through high-voltage-gated Ca2+ channels (HVGCCs; CaV1/CaV2) is an exceptionally powerful and versatile signal that controls numerous cell and physiological functions including neurotransmission, muscle contraction, and regulation of gene expression. The impressive ability of a singular signal, Ca2+ influx, to have such a plethora of functional outcomes is enabled by: molecular diversity of HVGCC pore-forming α1 and auxiliary subunits; organization of HVGCCs with extrinsic modulatory and effector protein to form discrete macromolecular complexes with unique properties; distinctive distribution of HVGCCs into separate subcellular compartments; and varying expression profiles of HVGCC isoforms among different tissues and organs. The capacity to block HVGCCs with selectivity and specificity with respect to the different levels of their organization is critical for fully understanding the scope of functional consequences of Ca2+ influx through them, and is also important for realizing their full potential as therapeutic targets. In this review, we discuss the gaps in the current landscape of small-molecule HVGCC blockers and how these may be addressed with designer genetically-encoded Ca2+ channel inhibitors (GECCIs) that draw inspiration from physiological protein inhibitors of HVGCCs.


Asunto(s)
Canales de Calcio , Transmisión Sináptica , Humanos , Canales de Calcio/genética , Canales de Calcio/metabolismo , Isoformas de Proteínas/metabolismo , Calcio/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA